MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous) Affiliated to Periyar University, Salem. Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

COURSE OUTCOMES (COs)

B.Sc. MATHEMATICS

PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEGE (Autonomous)

For the students Kalippatti (PO) - 637 501, Namakkal (DT admitted from the Academic Year 2019-2020 onwards

Programme Code : UMA B.Sc. Mathematics				
Course Code: M19UMA01		Core Course – I- Algebra and Trigonometry		
Batch 2019- 2020	Semester I	Hours / Week 5	Total Hours	Credits 4
			75	

This course introduces fundamental concepts such as matrix, theory of equations & vector calculus. It covers concepts such as Partial fractions Binomial, Exponential, Logarithmic Series, Symmetric, Skew Symmetric, Hermitian, Skew Hermitian, Orthogonal, Unitary matrices, Rank of a Matrix, consistency of Equations, Eigen values and Eigen vectors, Cayley – Hamilton theorem, Theory of equations and Trigonometry.. It provides technical skills to understand and develop various applications.

Course Outcomes:

СО	Statement	Knowledge Level	
	Identify the logic behind the execution of		
CO1	various Characterizations in Matrices and	K1	
	Partial fractions Binomial, Exponential,		
	Logarithmic Series.		
CO2	Understand the concepts of Eigen values,	KO	
	vectors, rank and Hamilton theorems.	112	
CO3	Analyze and discover the Theory of	V٨	
	equations.	K4	
CO4	Develop the idea about trigonometry and	V2	
	its problem.	KJ	
CO5	Apply the concepts to solve hyperbolic	K3	
	function & Logarithm of a complex number .	кJ	

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMA02 Core Course – II- Mathemat Examinations		thematics for Comp	oetitive	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	I	4	60	4

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such HCF, LCM, SQUARE ROOT, average, numbers, profit, loss, percentage, proposition & partnership. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Identify the logic behind numbers and fractions	K1
CO2	Understand the concepts of Square root, cube root and average.	K2
CO3	Analyze the problems on numbers and problems on ages.	K2
CO4	Develop the problems on indices, percentage, Profit And Loss.	K2
CO5	Apply the concepts to solve a problem for Ratio and Proportion , Partnership.	K3

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M1	9UMA03	Core Course – III- Differential Calculus & Integ Calculus		s & Integral
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	п	6	90	5

This course introduces fundamental concepts of differential and integral calculus. It covers concepts such as successive differentiation, Radius of curvature, integration by parts, Multiple integral, change of order of integration and applications of differential and integral calculus. It provides technical skills to understand and study various concepts about calculus.

Course Outcomes:

со	Statement	Knowledge Level	
	Identify the logic behind the		
CO1	differentiation and successive	K1	
	differentiation.		
CO2	Understand the Radius of curvature and	КО	
02	related problems.	KZ	
000	Analyze the integration concepts and	V.A	
003	integration by parts.	K4	
	Develop the idea about reduction		
CO4	formulae and multiple integrals and its	K3	
	problems.		
CO5	Apply the change of order of integration		
	concepts to solve a real-time problem	K3	
	using Jacobians and convergence ideas.		

Programme Code : UMA		B.Sc. Mathemati	cs	
Course Code: M1	9UMA04	Core Course – IV- Analytical Geometry 2D & 3D		ry 2D & 3D
Batch	Semester	Hours / Week Total Hours Credits		Credits
2019-2020	II	5	75	4

This course introduces fundamental concepts of Analytical geometry 2D & 3D. It covers concepts such as Straight lines, planes, tangent, normal, Sphere, cone & cylinder. It provides technical skills to understand and study various concepts geometry.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Identify the logic behind the straight lines	K1
CO^2	Understand the polar co ordinates,	K)
002	Straight line & Conic	112
	Analyze the concept of straight lines in	
CO3	3D, co planarity and shortest distance	K4
	between two lines.	
	Develop the idea about the sphere,	
CO4	tangent plane to the sphere and equation	K3
	of the conic.	
CO5	Apply the cone and cylinder concepts to	КЗ
	the 3D problems.	КJ

Programme Code : UMA		B.Sc. Mathemati	ics	
Course Code: M1	9UMA05	Core Course – V- Differential Equations And Laplace Transforms		tions And
Batch 2019-2020	Semester III	Hours / Week Total Hours Credits 4 60 4		

This course introduces fundamental concepts of differential equations. It covers concepts such as Linear differential equations with constant coefficients and variable coefficients, Exact differential equations, Clairaut's form, Partial differential equations, Laplace transform, inverse Laplace transform. It provides technical skills to understand and study various concepts in differential equations.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea of differential equations	K1
CO2	Understand the exact differential equations and Clairaut's form.	K2
CO3	Demonstrate understanding of the importance of partial differential equations.	K3
CO4	Develop the idea about the Laplace transform and its properties and simple problem.	K3
CO5	Understanding the inverse Laplace transform and its problem.	K3

Programme Code : UMA B.Sc. Mathematics				
Course Code: M19UMA06		Core Course – VI- S	STATICS	
Batch	Semester	Hours / Week Total Hours Credits		Credits
2019-2020	III	5	75	4

This course introduces fundamental concepts of Mechanics. It covers concepts such as Law of forces, moments, frictions and centenary. It provides technical skills to understand and study various concepts in statics.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Law of forces and their properties.	K1
CO2	Understand the concept of moments and couples.	K2
CO3	Analyze the concept of Equilibrium of three forces	K3
CO4	Develop the idea about Friction laws and its properties.	K3
CO5	Understanding the catenary and its common properties and its real life problems.	K4

Programme Code : UMA B.Sc. Mathematics				
Course Code: M1	19UMA07	Core Course – VII- Verbal and Non - Verbal Reasoning		rbal
Batch 2019-2020	Semester I	Hours / WeekTotal HoursCredits5754		Credits 4

This course introduces fundamental concepts of aptitude. It covers concepts such as Series Completion, Coding Decoding, Blood Relations, Direction Sense Test, Logical Venn Diagrams, Mathematical Operations, Logical Sequence of Words, Inserting the Missing Character, Assertion and Reason and Verification of Truth of the Statement. It provides technical skills to understand and study various concepts in verbal reasoning.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Series Completion, Coding Decoding and	K1
001	their properties.	111
CO2	Understand the concept of Blood	К2
001	Relations and Direction Sense Test.	112
CO3	Classification, Analytical reasoning and	K3
	their properties.	110
CO4	Analyze the concept of Mirror images,	КЗ
	Water images.	по
CO5	Develop the ideas about incomplete	K3

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M	19UMA07	Core Course – VII- VECTOR CALCULUS AND FOURIER SERIES		AND
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	4	60	4

This course introduces fundamental concepts of calculus. It covers concepts such as vector calculus and Fourier Series. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Acquiring knowledge of Gradient, directional derivative of scalar point functions, Equations of tangent plane	K1
CO2	Understand the Vector point function.	K2
CO3	Demonstrate understanding of the Fourier series.	K4
CO4	Develop the idea about the Half Range sine series.	K3
CO5	Understanding the applications Fourier integral.	K3

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M	Code: M19UMA08 Core Course – VIII- DYNAMICS			
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	5	75	4

This course introduces fundamental concepts of Mechanics. It covers concepts such as velocity, acceleration, projectile, impact, SHM and central orbits. It provides technical skills to understand and study various concepts in Dynamics.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Basic concepts of velocity and acceleration.	K1
CO2	Behavior of motion of objects. Applications of Projectile in practical problems	K2
CO3	Analyze the Behavior of elastic bodies in real life problems.	K2
CO4	Develop the idea about Simple Harmonic Motion and its Applications.	K3
CO5	Law of forces in central orbit and Law of inverse square.	K4

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAS02		SEC-II - PROGRAMMING IN C		
Batch 2019-2020	Semester IV	Hours / Week 2	Total Hours 30	Credits 2
Course Objectives				

This course introduces the student to gain knowledge on various services of programming in C. It also presents various sample programs.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Understand the basic concepts of C language	K2
CO2	Apply different types of decision making statements in c program	K3
CO3	Remember different types of String handling function	K1
CO4	Analyze different kinds of Arrays and functions	K4
CO5	Evaluate the concepts in C Programming	K5

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M	19UMA09	Core Course – IX- ALGEBRAIC STRUCTURES – I		JRES – I
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	6	90	5

This course introduces fundamental concepts of Algebraic structures. It covers concepts such as groups, cyclic groups, normal groups, homomorphism, Automorphism, rings, integral domain, field and Principal ideal Ring. It provides technical skills to understand and study various concepts in algebra.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Acquiring knowledge of basic abstract	K2
	systems of Mathematics.	
CO2	Understand the normal sub group and	КЭ
002	Quotient groups.	112
	Demonstrate understanding of the	
CO3	importance of homomorphism and	K4
	isomorphism in groups.	
CO4	Develop the idea about the rings, integral	K3
C04	domain, field and maximal ideal.	C.A
CO5	Understanding the Field of Quotient of	
	an Integral Domain, Euclidean Rings,	K3
	Principal ideal Ring.	

Programme Code : UMA B.Sc. Mathematics				
Course Code: M19UMA10		Core Course – X -REAL ANALYSIS - I		
Batch 2019-2020	Semester V	Hours / Week 6	Total Hours 90	Credits 5

This course introduces fundamental concepts of Real Analysis. It covers concepts such as Functions, Sequence, Series, Metric space and Continuous. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Basic concepts of functions and sequence	K1
CO2	Understand the bounded sequence, monotone sequence, limit superior and inferior	K2
CO3	Analyze the concept of series and tests for absolute convergence.	K4
CO4	Develop the idea about the Metric space and limits in metric space	K3
CO5	Understanding the continuous functions in metric spaces, Open sets and closed sets and discontinuous	K4

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M1	9UMA11	Core Course – XI- NUMERICAL METHODS		DS
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	5	75	4

This course introduces fundamental concepts of Numerical methods. It covers concepts such as Bisection method, Iteration method, Regular Falsi method, Newton-Raphson method, Direct methods, Gauss elimination method, Gauss-Jordan method, Iterative methods, Jacobi method, Gauss-Seidal method, Gregory-Newton interpolation formulae, Interpolation with unequal intervals, Lagrange's interpolation formula , Inverse interpolation, Trapezoidal rule, Simpson's one third rule, Simpson's three-eighth rule, Taylor series method, Euler's method, Runge-Kutta methods-2nd Order, Runge-Kutta methods-3rd Order, Runge-Kutta methods-4th Order. It provides technical skills to understand and study various concepts in Numerical analysis.

Course Outcomes:

со	Statement	Knowledge Level	
	Acquiring knowledge of basic idea of the		
CO1	solution of algebraic and transcendental	K1	
	equations.		
000	Understand the Solution of simultaneous	КО	
02	linear algebraic equations.	KZ	
CO2	Demonstrate understanding of the	КО	
003	importance of interpolation	KΖ	
CO4	Develop the idea about the Numerical	V2	
C04	differentiation and integration .	КЭ	
CO5	Understanding the Numerical solution of	V2	
	ordinary differential equation	K3	

Programme Code	e : UMA	B.Sc. Mathematics		
Course Code: M	19UMA12	Core Course – XII- OPERATION RESEARCH - I		RCH - I
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	6	90	4

This course introduces fundamental concepts of Operation Research. It covers concepts linear Programming, Simplex Method, Duality in Linear Programming, Transportation Problem, Assignment problem, Inventory Control. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes:

СО	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea of the	K1
• • • =	linear programming.	
CO2	Understand the Solution of the simplex	КО
C02	method.	NZ
	Demonstrate understanding of the	
CO3	importance of the duality of linear	K4
	programming	
CO4	Develop the idea about the	K3
	Transportation problem.	KJ
CO5	Understanding the concept of	V/
	Assignment problem.	К4

		-		
Programme Code : UMA		B.Sc. Mathematics		
Course Code: 19UMAS03		SEC-III - MATLAB		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	2	30	2

This course introduces fundamental concepts of Matlab theory. It covers concepts Basics of Matlab, The MATLAB Environment, Files Input / Output, Passing Functions To M – Files , Errors, Round Off Errors and Truncation Errors. It provides technical skills to understand the concepts in Matlab.

Course Outcomes

СО	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea of the Basic Matlab.	K1
CO2	Understand the Matlab programming skills.	K3
CO3	Demonstrate understanding of the Matlab Commands and Various Page Styles.	K2
CO4	Develop the idea about the Passing Functions To M – Files	K3
CO5	Understanding the concept errors handling.	K4

Programme Code :	UMA B.Sc. Mathematics			
Course Code: M19	OUMA13	Core Course – XIII- ALGEBRAIC STRUCTURES -II		CTURES -II
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	6	90	5

This course introduces fundamental concepts of Algebraic structures. It covers concepts such as vector space, Quotient space, Inner product space, Linear transformation, matrices, trace, transpose and determinants. It provides technical skills to understand and study various concepts in algebra.

Course Outcomes

со	Statement	Knowledge Level	
CO1	Acquiring knowledge of vector space, Internal direct sum and External direct	K1	
	sum.		
CO2	Understand the Linear Independence &	K2	
	Quotient space.	1124	
CO3	Demonstrate understanding of the	КЗ	
003	importance of inner product space.	KO	
CO4	Develop the idea about the linear	K3	
004	transformation, matrices.	КЭ	
CO5	Understanding the traces, transposes	V/	
	and determinants.	K4	

Programme Code : UMA B.Sc		B.Sc. Mathematics		
Course Code: M1	9UMA14	Core Course -XIV- REAL ANALYSIS - II		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	6	90	5

This course introduces fundamental concepts of Real Analysis. It covers concepts such as connected, complete, compact, Riemann integral, Point wise convergence and uniform convergence of series of functions. It provides technical skills to understand and study various concepts in Real analysis.

Course Outcomes

со	Statement	Knowledge Level	
CO1	Basic concepts of connected sets and	КО	
001	complete metric space.	112	
	Understand the continuous functions in		
CO2	compact metric space and uniform	K2	
	continuous.		
CO3	Existence of Riemann integral and	Γ.Λ.	
005	properties of Riemann integral.	КŦ	
CO4	Develop the idea about the Rolls theorem,	K3	
004	Law of mean and Improper integrals.	KJ	
	Understanding the Point wise		
CO5	convergence of sequence of functions,		
	uniform convergence of sequence of	K4	
	functions and uniform convergence of		
	series of functions		

Programme Code : UMA B.Sc. Mathematics				
Course Code: M	19UMA15	Core Course – XV- COMPLEX ANALYSIS		
Batch 2019-2020	Semester VI	Hours / Week 6	Total Hours 90	Credits 4

This course introduces fundamental concepts of complex analysis . It covers concepts such as Complex Numbers and Analytical Functions, Bilinear Transformations and Mapping By Elementary Functions, Power Series and Series Expansions, Complex Integration and Calculus Of Residues. It provides technical skills to understand and study various concepts in analysis.

Course Outcomes:

со	Statement	Knowledge Level	
CO1	Acquiring knowledge of Complex	I Z 1	
COI	Numbers And Analytical Functions.	K1	
CO2	Understand Bilinear Transformations And		
002	Mapping By Elementary Functions.	KΖ	
CO3	Demonstrate understanding of the Power	K4	
	Series And Series Expansions.		
CO4	Develop the idea about the Complex	K4	
	Integration.		
CO5	Understanding the applications Calculus	КЗ	
	of Residues.	СЛ	

Programme Code : UMA		B.Sc. Mathematics			
Course Code: M	19UMA16	Core Course –XVI- Operation Research –II		I	
Batch	Semester	Hours / Week	Total Hours	Credits	
2019-2020	VI	5	75	4	

This course introduces fundamental concepts of Operation Research. It covers Non-Linear Programming, Sequencing Problem, Dynamic Programming, Replacement Problem and System Reliability, Queuing Theory, Network Routing Problems and Network Scheduling By PERT / CPM. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes:

СО	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea of the Non-Linear Programming.	K1
CO2	Understand the Solution of Sequencing Problem.	K2
CO3	Demonstrate understanding of the importance of the Inventory Control.	K4
CO4	Develop the idea about the Queuing Theory.	K3
CO5	Understanding the concept of Network Routing Problems and Network Scheduling By PERT / CPM	K4

Programme Code : UMA		B.Sc. Mathematics		
Course Code: 19	UMAS04	SEC-IV- QUANTITATIVE APTITUDE		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	2	30	2

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such Time & Work, Pipes & Cistern, Time & Distance, Problem on Trains, Simple Interest, Compound Interest, Area, Volume & Surface Areas, Permutations & Combinations Probability. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Identify the logic behind Time & Work Pipes & Cistern.	K1
CO2	Understand the concepts of Time & Distance and Problem on Trains	K2
CO3	Analyze the problems on Simple Interest And Compound Interest	K2
CO4	Develop the Area Volume & Surface Areas.	K2
CO5	Apply the concepts to solve a problem for Permutations & Combinations Probability.	K3

Programme Code : UMA B.Sc. Mathematics				
Course Code: M19UMAE01		Elective - I- DISCRE	TE MATHEMATICS	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	5	75	4

This course introduces fundamental concepts of discrete mathematics. It covers concepts such as Mathematical Logic, Normal Forms, Statement Calculus, Relations, Functions, Algebraic systems, homomorphism of semi groups & monoids, Lattices as Algebraic systems and Boolean Functions. It provides technical skills to understand and study various concepts in abstract algebra.

Course Outcomes:

СО	Statement	Knowledge Level
	Acquiring knowledge of Mathematical	
CO1	Logic and Statement Formulas and Truth	K1
	Table.	
CO2	Understand Normal Forms , Statement	КО
CO_2	Calculus.	KZ
CO3	Demonstrate understanding of the	K3
	Relations and Functions.	КJ
	Develop the idea about the Algebraic	
CO4	systems, homomorphism of semi groups	K4
	& monoids	
CO5	Understanding the applications of	
	Lattices as Algebraic systems and	K3
	Boolean Functions	

Programme Code : UMA B.Sc. Mathematics				
Course Code: M19UMAE02		Elective – I- ELEMEN	ITARY NUMBER TH	EORY
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	5	75	4

This course introduces fundamental concepts of Number theory. It covers concepts such as Divisibility of integers-Division, Euclidean algorithm, Prime and Composite numbers, Divisors of an integer-Arithmetic functions, Perfect numbers, Euler function, Congruence's, linear congruence, Fermat's theorem, Wilson's theorem, Lagrange's theorem. It provides technical skills to understand and study various concepts in number theory analysis.

Course Outcomes:

СО	Statement	Knowledge Level
	Acquiring knowledge of the Divisibility of	
CO1	integers-Division and Euclidean	K1
	algorithm.	
	Understand Prime and Composite	
CO2	numbers and Divisors of an integer-	K2
	Arithmetic functions	
CO3	Demonstrate understanding of the Perfect	K3
	numbers and Euler function.	NJ
CO4	Develop the idea about the Congruence's	K3
	and linear congruence.	KJ
CO5	Understanding the applications of	
	Fermat's theorem, Wilson's theorem,	K3
	Lagrange's theorem.	

Programme Code	e : UMA	B.Sc. Mathematics		
Course Code: M19UMAE03		Elective-I- Astronom	y	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	v	5	75	4

This course introduces fundamental concepts of Astronomy. It covers concepts such as Standard formulae in Spherical Trigonometry , Diurnal motion Astronomical Refraction , Geocentric parallax , Kepler's laws of planetary motion , Fixing the position of the First point of Aries , Eclipses , General description of solar system and Stellar universe, . It provides technical skills to understand and study various concepts in space analysis.

Course Outcomes:

со	Statement	Knowledge Level	
001	Introducing the exciting world of		
001	astronomy to the students.	K1	
CO2	Helping the students to study about the	КО	
C02	celestial objects.	112	
CO3	Understanding the effects of refractions	КЗ	
	geocentric parallax.	NO	
	Compiling solar and lunar ellipses.		
CO4	Understanding Kepler's laws of planetary	K2	
	motion		
CO5	Understanding the variation in duration		
	of day and night in various zones	K4	
	of earth.		

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19	Code: M19UMAE04 Elective – II- Graph Theory			
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	5	75	4

This course introduces fundamental concepts of Graph theory . It covers as Graphs, Sub grapgs, Operatrions on graphs, paths, connection, blocks, Eulerian, Hamiltonian, Trees and directed graphs. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea graphs and sub graphs.	K1
CO2	Understand the Paths, connections.	K2
CO3	Demonstrate understanding of the importance of the cut point, cutedge and blocks.	K3
CO4	Develop the idea about the trees and centre of tree.	K3
CO5	Understanding the concept of directed graphs and its characterization.	K4

Programme Code : UMA B.Sc. Mathematics				
Course Code: M1	9UMAE05	Elective – II- MATHEMATICAL MODELLING		IG
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	5	75	4

This course introduces fundamental concepts of Mathematical modeling. It covers Linear growth model, Non-linear growth and decay models, Modeling in population dynamics, Modeling of epidemics, Modeling in second order O.D. E, Elliptic motion of a satellites, Modeling through difference equations, Harrod model, Modeling through graphs, Communication network and Detection of clique. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes:

CO	Statement	Knowledge	
0	Statement	Level	
	Acquiring knowledge of basic idea of the		
CO1	Linear growth model, Non-linear growth	K1	
	and decay models.		
CO2	Understand the Modeling in population	КО	
002	dynamics and Modeling of epidemics.	RΖ	
	Demonstrate understanding of the		
CO3	importance of the Modeling in second	K2	
005	order O.D. E, Elliptic motion of a		
	satellites.		
	Develop the idea about the Modeling		
CO4	through difference equations, Harrod	K3	
	model.		
CO5	Understanding the concept of Modeling		
	through graphs, Communication network	K3	
	and Detection of clique.		

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19UMAE06		Elective-II-Probabilit	y Theory	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	VI	3	15	+

This course introduces fundamental concepts of Statistics . It covers such as probability Axioms, conditional probability , probability distribution of a random variable, Discrete and continuous variables, Functions of a random variable, Moment generating functions, Binomial distribution, Poisson distribution, Gamma distribution, Normal distribution, Regression model Two way analysis of variance. It provides technical skills to understand the concepts in applied mathematics.

Course Outcomes:

CO	Statement	Knowledge Level
	Acquiring knowledge of basic idea of	
CO1	probability Axioms, conditional	K1
	probability.	
	Understand the probability distribution of	
CO2	a random variable, Discrete and	K2
	continuous variables.	
	Demonstrate understanding of the	
CO3	importance of the Functions of a random	K2
	variable, Moment generating functions.	
	Develop the idea about the Binomial	
CO4	distribution, Poisson distribution,	K3
	Gamma distribution, Normal distribution.	
CO5	Understanding the concept of	
	Regression model Two way analysis of	K3
	variance.	

Programme Code	e : UMA	B.Sc. Mathematics		
Course Code: M	19UMAA01	Allied Course – I Algebra, Integral Calculus and Fourier Series		us and
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	I	5	75	4

This course introduces fundamental concepts of Basic Mathematics. It covers such as matrix, Eigen Values and Eigen Vectors, Cayley Hamilton theorem, Polynomial equations, Imaginary and irrational roots, Descarte's rule of signs, Radius of curvature in Cartesian and polar co-ordinates, Integral Calculus, Integration by Parts, Fourier Series, Half range series. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes:

со	Statement	Knowledge Level	
	Acquiring knowledge of basic idea of		
CO1	matrix, Eigen Values and Eigen Vectors,	K1	
	Cayley Hamilton theorem.		
000	Understand the theory of equations and	K2	
02	its properties.		
CO3	Demonstrate understanding of the	КО	
	importance of the radius of curvature.	KZ	
CO4	Develop the idea about the solution of	VO	
C04	Integral Calculus, Integration by Parts.	KZ	
CO5	Understanding the concept of Fourier	VO	
	Series, Half range series.	nð	

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M	19UMAA02	Allied Course –II -Differential Equations and Laplac Transforms		and Laplace
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	I	5	75	4

This course introduces fundamental concepts of Basic Mathematics. It covers such as Second order differential equation with constant coefficient, Formation of partial differential equation by eliminating arbitrary constants and arbitrary functions, Solutions of standard types of partial differential equations, Laplace transforms, Inverse Laplace transforms . It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes:

СО	Statement	Knowledge Level
	Acquiring knowledge of basic idea of	
CO1	Second order differential equation with	K1
	constant coefficient and its problems.	
	Understand the Formation of partial	
CO2	differential equation by eliminating	КО
02	arbitrary constants and arbitrary	RΖ
	functions.	
	Demonstrate understanding of the	
CO3	importance of the Solutions of standard	K2
	types of partial differential equations	
CO4	Develop the idea about the solution of	VO
CO4	the Laplace transforms and its problems.	κZ
CO5	Understanding the concept of the	
	inverse Laplace transforms and its	K3
	problems.	

Programme Code : UMA		B.Sc. Mathematics	1	
Course Code: M19UMAAP01		Allied Practical – I -	Mathematics	
Batch	Semester	Hours / Week	Total	Credits
2019-2020	II	2	Hours 75	2

This course introduces fundamental concepts of Basic Mathematics. It covers such as Characteristic equation, Cayley Hamilton theorem, nth derivative, Leibnitz formula for nth derivative, Partial differentiation, Homogeneous functions, Scalar point function Divergence, curl of a vector point function Solenoidal and irrotational vectors. Application of Laplace transforms to solve second order differential equations with constant coefficients. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Acquiring knowledge of basic idea of Characteristic	K 1
COI	equation, Cayley Hamilton theorem and its problems.	K1
CO2	Understand the Formation of nth derivative, Leibnitz	КО
02	formula for nth derivative.	KZ
	Demonstrate understanding of the importance of the	
CO3	Solutions Partial differentiation, Homogeneous functions.	K2
	Develop the idea about the solution of the Scalar point	
CO4	function Divergence, curl of a vector point function ,	K2
	Solenoidal and irrotational vectors.	
	Understanding the concept of the Application of	
CO5	Laplace transforms to solve second order differential	K3
	equations with constant coefficients.	

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M1	ourse Code: M19NMA01 NMEC-I - Mathematics For Competitive Example		xamination - I	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	III	2	30	2

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such HCF, LCM, Square Root, average, numbers, profit, loss, percentage, proposition & partnership. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Identify the logic behind numbers and fractions	K1
CO2	Understand the concepts of Square root, cube root and average.	K2
CO3	Analyze the problems on numbers and problems on ages.	K2
CO4	Develop the problems on indices, percentage, Profit And Loss.	K2
CO5	Apply the concepts to solve a problem for Ratio and Proportion, Partnership.	K3

		1		
Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19NMA02		NMEC – I - MATRIX	ALGEBRA	
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	III	2	30	2

This course introduces fundamental concepts of Basic Mathematics. It covers such as Matrix, Addition, Subtraction, Multiplication, Transpose of a Matrix, adjoint of a Matrix, Inverse of the Matrix, Symmetric, Skew symmetric, Hermitian and Skew Hermitian Matrix, Rank of The Matrix, Cayley Hamilton Theorem. It provides technical skills to understand the concepts in allied mathematics.

Course Outcomes:

СО	Statement	Knowledge Level	
	Acquiring knowledge of basic idea of		
CO1	Matrix, Addition, Subtraction,	K1	
	Multiplication,		
CO2	Understand the Transpose of a Matrix,	КО	
C02	Adjoint of a Matrix, Inverse of the Matrix.	KZ	
	Demonstrate understanding of the		
CO3	importance of the Symmetric, Skew	VO	
005	symmetric, Hermitian and Skew	112	
	Hermitian Matrix.		
CO4	Develop the idea about the Rank of The	КО	
	Matrix.	IX2	
CO5	Understanding the concept Cayley	K3	
	Hamilton Theorem and its problem.	nd	

Programme Code : UMA B.Sc. Mathematics				
Course Code: M	119NMA03	NMEC – II - Mathematics For Competitive Examination – II		e
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	2	30	2

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such as Partnership, Simple interest, Compound interest, Area and Odd man out &series. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

СО	Statement	Knowledge Level
CO1	Identify the logic behind Partnership and its problem.	K1
CO2	Understand the concepts of Simple interest and its problem.	K2
CO3	Analyze the problems on Compound interest and its problem.	K2
CO4	Develop the problems on Area and its problem	K2
CO5	Apply the concepts to solve a problem for Odd man out &series.	K3

Programme Code : UMA		B.Sc. Mathematics		
Course Code: M19NMA04		NMEC – II - Applied Numerical Methods		
Batch	Semester	Hours / Week	Total Hours	Credits
2019-2020	IV	2	30	2

This course introduces fundamental concepts such as Numerical methods. It covers concepts such as Solution of algebraic and Transcendental equations, Bisection Method, Newton – Raphson Method, Finite difference, Expression of any value of y in terms of the initial value y0 and differences, Newton Forward difference, Newton Backward difference, Central differences. It provides technical skills to understand and develop the numerical ability.

Course Outcomes:

со	Statement	Knowledge Level
CO1	Identify the logic behind Solution of algebraic and Transcendental equations , Bisection Method, Newton – Raphson Method.	K1
CO2	Understand the concepts of , Finite difference , Expression of any value of y in terms of the initial value y0 and differences	K2
CO3	Analyze the problems on Newton Forward difference and its problem.	K3
CO4	Develop the problems on Newton backward difference and its problem	K2
CO5	Apply the concepts to solve a problem for Central differences.	K3

Programme Code : UMA B.Sc. Mathematics				
Course Code: M	19UMAVA01	Value Added – I - Verbal and Logical Reasoning		oning
Batch	Semester	Hours / Week Total Hours Credits		Credits
2019-2020	III	2	30	2

This course introduces fundamental concepts such as verbal and logical reasoning in Quantitative aptitude. It covers concepts such as Verbal Reasoning, Non - Verbal Reasoning, Problems on seating Arrangements, Family based on problems, Odd man out and series. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

СО	Statement	Knowledge Level	
CO1	Identify the logic behind Verbal	V 1	
COI	Reasoning and its problem.	K1	
CO2	Understand the concepts of Verbal	K2	
	Reasoning and its problem.		
CO3	Understand the concepts of Non - Verbal	K2	
	Reasoning and its problem.		
CO4	Develop the Family based on problems.	K2	
CO5	Apply the concepts to solve a problem for Odd man out and series.	K3	

		,	v		
Programme Code : UMA		B.Sc. Mathematics			
Course Code:M19UMAVA02		Value Added – II - Quantitative Aptitude Examinations			
Batch	Semester	Hours / Week Total Hours Credit		Credits	
2019-2020	IV	2	30	2	

This course introduces fundamental concepts such as Numbers, system in Quantitative aptitude. It covers concepts such as Time & Work, Pipes & Cistern, Time & Distance, Problems on Trains, Boats & Streams. It provides technical skills to understand and develop various department examinations like Group Exams, TNPSC, RRB, SSC & IBPS.

Course Outcomes:

On the successful completion of the course, students will be able to

co	Statement	Knowledge Level
CO1	Identify the logic behind Time & Work and its problem.	K1
CO2	Understand the concepts of Pipes & Cistern and its problem.	K2
CO3	Analyze the problems on Time & Distance and its problem.	K2
CO4	Develop the problems on Trains and its problem	K2
CO5	Apply the concepts to solve a problem for Boats & Streams.	K3

Head of the Department Head of the Department of Mathematics Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

PRINCIPAL

PRINCIPAL MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

MAHENDRA ARTS & SCIENCE COLLEGE Kalippatti (PO) - 637 501. Namakkal (DT (Autonomous) Kalippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE (Autonomous)

Affiliated to Periyar University, Salem.

Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti - 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

PROGRAMME OUTCOMES (POs) OF B.Sc. MATHEMATICS

Academic year 2020-2021

PO1: Provides a solid foundation in the discipline of Mathematics and enable students to formulate mathematical solutions to real life problems.

PO2: Under graduate students are to be passionately engaged in initial learning with an aim to think differently as agents of new knowledge, understanding and applying new ideas in order to acquire employability/ self employment.

PO3: Under graduate students are trained to take up higher learning programmes.

PO4: Under graduate students are to be exposed to technical, analytical and creative skills.

PO5: Under graduate students are to be imparted with a board conceptual background in the Biological sciences/Computer sciences/ Languages and cultures / Management studies / Physical sciences.

). Head of the Department Head of the Department of Mathemavics Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

MAHENDRA ARTS & SCIENCE COLLEGE (Autonomous) Kalippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE (Autonomous) Kalippatti (PO) - 637 591, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE

(Autonomous)

Affiliated to Periyar University, Salem. Accredited by NAAC with 'A' Grade & Recognized u/s 2(f) and 12(B) of the UGC Act 1956 Kalippatti – 637 501, Namakkal (Dt), Tamil Nadu.

DEPARTMENT OF MATHEMATICS

PROGRAMME SPECIFIC OUTCOMES (PSOs) OF B.Sc. MATHEMATICS

Academic year 2020-2021

PSO 1: Understand and apply mathematical concepts in various contexts related to science, technology, business, and industry.

PSO 2: Acquire the knowledge to apply analytical and theoretical skills to model and solve mathematical problems.

PSO 3: Formulate and develop mathematical arguments in a logical manner.

PSO 4: Apply the critical thinking ability to carry out extended investigation and innovation of mathematical formulations.

Head of the Department of Mathematics Mahendra Arts & Science College, KALIPPATTI - 637 501. Namakkal District.

Principal

PRINCIPAL

MAHENDRA ARTS & SCIENCE COLLEGF (Autonomous) Kalippatti (PO) - 637 501, Namakkal (DT)

MAHENDRA ARTS & SCIENCE COLLEGE (Autonomous) Kalippatti (PO) - 637 501, Namakkal (DT)